CAMPUS SENTIMENT ANALYSIS E-COMPLAINT USING PROBABILISTIC NEURAL NETWORK ALGORITHM
نویسندگان
چکیده
منابع مشابه
Sentiment Analysis using Recursive Neural Network
This work is based on [1] where the recursive autoencoder (RAE) is used to predict sentiment distributions. In this project, I compare the performance of several different tree building schemes and find that greedily merging nodes with minimal autoencoder error gives the best performance, which is better than using the correct parsing tree, among others. I then apply the recursive neural networ...
متن کاملPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Sentiment Analysis using neural architectures
Most sentiment analysis approaches are based on heavy preprocessing of the data which involves carefully choosing the right features based on the nature of the data, intuitive analysis and factors like language. I explore an unconventional approach to sentiment analysis based on recently proposed neural network architectures for NLP that parallel traditional well-performing approaches, both in ...
متن کاملRecursive Nested Neural Network for Sentiment Analysis
Early sentiment prediction systems use semantic vector representation of words to express longer phrases and sentences. These methods proved to have a poor performance, since they are not considering the compositionality in language. Recently many richer models has been proposed to understand the compositionality in natural language for better sentiment predictions. Most of these algorithms are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kursor
سال: 2017
ISSN: 2301-6914,0216-0544
DOI: 10.28961/kursor.v8i3.88